Table of Contents

Preface

1. Getting Started

1.0 Introduction .. 1
1.1 Installing the Integrated Development Environment (IDE) 6
1.2 Setting Up the Arduino Board 10
1.3 Using the Integrated Development Environment to Prepare an Arduino Sketch ... 13
1.4 Uploading and Running the Blink Sketch 17
1.5 Creating and Saving a Sketch 19
1.6 An Easy First Arduino Project 22
1.7 Using Arduino with Boards Not Included in the Standard Distribution .. 27
1.8 Using a 32-Bit Arduino (or Compatible) 31

2. Arduino Programming

2.0 Introduction .. 35
2.1 A Typical Arduino Sketch 36
2.2 Using Simple Primitive Types (Variables) 38
2.3 Using Floating-Point Numbers 40
2.4 Working with Groups of Values 43
2.5 Using Arduino String Functionality 48
2.6 Using C Character Strings 53
2.7 Splitting Comma-Separated Text into Groups 54
2.8 Converting a Number to a String 57
2.9 Converting a String to a Number 59
2.10 Structuring Your Code into Functional Blocks 62
2.11 Returning More than One Value from a Function 66
2.12 Taking Actions Based on Conditions 69
3. Mathematical Operations 89
 3.0 Introduction 89
 3.1 Adding, Subtracting, Multiplying, and Dividing 89
 3.2 Incrementing and Decrementing Values 91
 3.3 Finding the Remainder After Dividing Two Values 92
 3.4 Determining the Absolute Value 94
 3.5 Constraining a Number to a Range of Values 94
 3.6 Finding the Minimum or Maximum of Some Values 95
 3.7 Raising a Number to a Power 97
 3.8 Taking the Square Root 97
 3.9 Rounding Floating-Point Numbers Up and Down 98
 3.10 Using Trigonometric Functions 99
 3.11 Generating Random Numbers 100
 3.12 Setting and Reading Bits 103
 3.13 Shifting Bits 106
 3.14 Extracting High and Low Bytes in an int or long 107
 3.15 Forming an int or long from High and Low Bytes 109

4. Serial Communications 113
 4.0 Introduction 113
 4.1 Sending Information from Arduino to Your Computer 121
 4.2 Sending Formatted Text and Numeric Data from Arduino 125
 4.3 Receiving Serial Data in Arduino 129
 4.4 Sending Multiple Text Fields from Arduino in a Single Message 134
 4.5 Receiving Multiple Text Fields in a Single Message in Arduino 141
 4.6 Sending Binary Data from Arduino 144
 4.7 Receiving Binary Data from Arduino on a Computer 149
 4.8 Sending Binary Values from Processing to Arduino 152
 4.9 Sending the Values of Multiple Arduino Pins 155
 4.10 Logging Arduino Data to a File on Your Computer 159
 4.11 Sending Data to More than One Serial Device 162
 4.12 Receiving Serial Data from More than One Serial Device 167
7.5 Controlling Lots of Color LEDs 292
7.6 Sequencing Multiple LEDs: Creating a Bar Graph 295
7.7 Sequencing Multiple LEDs: Making a Chase Sequence 300
7.8 Controlling an LED Matrix Using Multiplexing 301
7.9 Displaying Images on an LED Matrix 305
7.10 Controlling a Matrix of LEDs: Charlieplexing 309
7.11 Driving a 7-Segment LED Display 315
7.12 Driving Multidigit, 7-Segment LED Displays: Multiplexing 318
7.13 Driving Multidigit, 7-Segment LED Displays with the Fewest Pins 320
7.14 Controlling an Array of LEDs by Using MAX72xx Shift Registers 323
7.15 Increasing the Number of Analog Outputs Using PWM Extender Chips 325
7.16 Using an Analog Panel Meter as a Display 328

8. Physical Output .. 331
 8.0 Introduction 331
 8.1 Controlling Rotational Position with a Servo 334
 8.2 Controlling Servo Rotation with a Potentiometer or Sensor 337
 8.3 Controlling the Speed of Continuous Rotation Servos 339
 8.4 Controlling Servos Using Computer Commands 341
 8.5 Driving a Brushless Motor (Using a Hobby Speed Controller) 342
 8.6 Controlling Solenoids and Relays 344
 8.7 Making an Object Vibrate 346
 8.8 Driving a Brushed Motor Using a Transistor 348
 8.9 Controlling the Direction of a Brushed Motor with an H-Bridge 350
 8.10 Controlling the Direction and Speed of a Brushed Motor with an H-Bridge 353
 8.11 Using Sensors to Control the Direction and Speed of Brushed Motors 355
 8.12 Driving a Bipolar Stepper Motor 362
 8.13 Driving a Bipolar Stepper Motor (Using the EasyDriver Board) 365
 8.14 Driving a Unipolar Stepper Motor with the ULN2003A Driver Chip 369

9. Audio Output .. 373
 9.0 Introduction 373
 9.1 Playing Tones 376
 9.2 Playing a Simple Melody 379
 9.3 Generating More than One Simultaneous Tone 381
 9.4 Generating Audio Tones Without Interfering with PWM 383
 9.5 Controlling MIDI 385
 9.6 Making an Audio Synthesizer 389
 9.7 Attain High-Quality Audio Synthesis 391
10. Remotely Controlling External Devices. ... 395
 10.0 Introduction 395
 10.1 Responding to an Infrared Remote Control 396
 10.2 Decoding Infrared Remote Control Signals 399
 10.3 Imitating Remote Control Signals 403
 10.4 Controlling a Digital Camera 406
 10.5 Controlling AC Devices by Hacking a Remote-Controlled Switch 408

11. Using Displays. ... 413
 11.0 Introduction 413
 11.1 Connecting and Using a Text LCD Display 414
 11.2 Formatting Text 418
 11.3 Turning the Cursor and Display On or Off 420
 11.4 Scrolling Text 422
 11.5 Displaying Special Symbols 425
 11.6 Creating Custom Characters 428
 11.7 Displaying Symbols Larger than a Single Character 430
 11.8 Displaying Pixels Smaller than a Single Character 433
 11.9 Selecting a Graphical LCD Display 435
 11.10 Control a Full-Color LCD Display 437
 11.11 Control a Monochrome OLED Display 441

12. Using Time and Dates. ... 447
 12.0 Introduction 447
 12.1 Using millis to Determine Duration 447
 12.2 Creating Pauses in Your Sketch 449
 12.3 More Precisely Measuring the Duration of a Pulse 453
 12.4 Using Arduino as a Clock 455
 12.5 Creating an Alarm to Periodically Call a Function 463
 12.6 Using a Real-Time Clock 466

13. Communicating Using I2C and SPI. ... 471
 13.0 Introduction 471
 13.1 Connecting Multiple I2C Devices 477
 13.2 Connecting Multiple SPI Devices 481
 13.3 Working with an I2C Integrated Circuit 484
 13.4 Increase I/O with an I2C Port Expander 488
 13.5 Communicating Between Two or More Arduino Boards 492
 13.6 Using the Wii Nunchuck Accelerometer 496

14. Simple Wireless Communication. ... 503
 14.0 Introduction 503
14.1 Sending Messages Using Low-Cost Wireless Modules 503
14.2 Connecting Arduino over a ZigBee or 802.15.4 Network 511
14.3 Sending a Message to a Particular XBee 519
14.4 Sending Sensor Data Between XBees 522
14.5 Activating an Actuator Connected to an XBee 528
14.6 Communicating with Classic Bluetooth Devices 533
14.7 Communicating with Bluetooth Low Energy Devices 536

15. WiFi and Ethernet .. 541
 15.0 Introduction 541
 15.1 Connecting to an Ethernet Network 543
 15.2 Obtaining Your IP Address Automatically 548
 15.3 Sending and Receiving Simple Messages (UDP) 549
 15.4 Use an Arduino with Built-in WiFi 557
 15.5 Connect to WiFi with Low-Cost Modules 560
 15.6 Extracting Data from a Web Response 566
 15.7 Requesting Data from a Web Server Using XML 571
 15.8 Setting Up an Arduino to Be a Web Server 573
 15.9 Handling Incoming Web Requests 579
 15.10 Handling Incoming Requests for Specific Pages 583
 15.11 Using HTML to Format Web Server Responses 588
 15.12 Requesting Web Data Using Forms (POST) 592
 15.13 Serving Web Pages Containing Large Amounts of Data 596
 15.14 Sending Twitter Messages 604
 15.15 Exchanging Data for the Internet of Things 607
 15.16 Publishing Data to an MQTT Broker 608
 15.17 Subscribing to Data on an MQTT Broker 610
 15.18 Getting the Time from an Internet Time Server 612

 16.0 Introduction 619
 16.1 Using the Built-in Libraries 619
 16.2 Installing Third-Party Libraries 623
 16.3 Modifying a Library 625
 16.4 Creating Your Own Library 628
 16.5 Creating a Library That Uses Other Libraries 634
 16.6 Updating Third-Party Libraries for Arduino 1.0 640

17. Advanced Coding and Memory Handling 643
 17.0 Introduction 643
 17.1 Understanding the Arduino Build Process 645
 17.2 Determining the Amount of Free and Used RAM 648
17.3 Storing and Retrieving Numeric Values in Program Memory 651
17.4 Storing and Retrieving Strings in Program Memory 654
17.5 Using #define and const Instead of Integers 656
17.6 Using Conditional Compilations 657

18. Using the Controller Chip Hardware .. 661
 18.0 Introduction 661
 18.1 Storing Data in Permanent EEPROM Memory 666
 18.2 Take Action Automatically When a Pin State Changes 670
 18.3 Perform Periodic Actions 672
 18.4 Setting Timer Pulse Width and Duration 675
 18.5 Creating a Pulse Generator 677
 18.6 Changing a Timer’s PWM Frequency 679
 18.7 Counting Pulses 682
 18.8 Measuring Pulses More Accurately 684
 18.9 Measuring Analog Values Quickly 687
 18.10 Reducing Battery Drain 689
 18.11 Setting Digital Pins Quickly 691
 18.12 Uploading Sketches Using a Programmer 694
 18.13 Replacing the Arduino Bootloader 696
 18.14 Move the Mouse Cursor on a PC or Mac 697

A. Electronic Components .. 701
B. Using Schematic Diagrams and Datasheets ... 707
C. Building and Connecting the Circuit .. 713
D. Tips on Troubleshooting Software Problems 717
E. Tips on Troubleshooting Hardware Problems 721
F. Digital and Analog Pins ... 725
G. ASCII and Extended Character Sets .. 729
Index ... 733