Table of Contents

Preface. ... xiii

Part I. Foundations of Data Systems

1. **Reliable, Scalable, and Maintainable Applications.** 3
 Thinking About Data Systems 4
 Reliability ... 6
 Hardware Faults 7
 Software Errors 8
 Human Errors 9
 How Important Is Reliability? 10
 Scalability .. 10
 Describing Load 11
 Describing Performance 13
 Approaches for Coping with Load 17
 Maintainability 18
 Operability: Making Life Easy for Operations 19
 Simplicity: Managing Complexity 20
 Evolvability: Making Change Easy 21
 Summary ... 22

2. **Data Models and Query Languages.** ... 27
 Relational Model Versus Document Model 28
 The Birth of NoSQL 29
 The Object-Relational Mismatch 29
 Many-to-One and Many-to-Many Relationships 33
 Are Document Databases Repeating History? ... 36
Relational Versus Document Databases Today 38
Query Languages for Data 42
Declarative Queries on the Web 44
MapReduce Querying 46
Graph-Like Data Models 49
Property Graphs 50
The Cypher Query Language 52
Graph Queries in SQL 53
Triple-Stores and SPARQL 55
The Foundation: Datalog 60
Summary 63

3. Storage and Retrieval ... 69

Data Structures That Power Your Database 70
Hash Indexes 72
SSTables and LSM-Trees 76
B-Trees 79
Comparing B-Trees and LSM-Trees 83
Other Indexing Structures 85
Transaction Processing or Analytics?
Data Warehousing 91
Stars and Snowflakes: Schemas for Analytics 93
Column-Oriented Storage 95
Column Compression 97
Sort Order in Column Storage 99
Writing to Column-Oriented Storage 101
Aggregation: Data Cubes and Materialized Views 101
Summary 103

4. Encoding and Evolution ... 111

Formats for Encoding Data 112
Language-Specific Formats 113
JSON, XML, and Binary Variants 114
Thrift and Protocol Buffers 117
Avro 122
The Merits of Schemas 127
Modes of Dataflow 128
Dataflow Through Databases 129
Dataflow Through Services: REST and RPC 131
Message-Passing Dataflow 136
Summary 139
Part II. Distributed Data

5. Replication ... 151
 Leaders and Followers 152
 Synchronous Versus Asynchronous Replication 153
 Setting Up New Followers 155
 Handling Node Outages 156
 Implementation of Replication Logs 158
 Problems with Replication Lag 161
 Reading Your Own Writes 162
 Monotonic Reads 164
 Consistent Prefix Reads 165
 Solutions for Replication Lag 167
 Multi-Leader Replication 168
 Use Cases for Multi-Leader Replication 168
 Handling Write Conflicts 171
 Multi-Leader Replication Topologies 175
 Leaderless Replication 177
 Writing to the Database When a Node Is Down 177
 Limitations of Quorum Consistency 181
 Sloppy Quorums and Hinted Handoff 183
 Detecting Concurrent Writes 184
 Summary 192

6. Partitioning ... 199
 Partitioning and Replication 200
 Partitioning of Key-Value Data 201
 Partitioning by Key Range 202
 Partitioning by Hash of Key 203
 Skewed Workloads and Relieving Hot Spots 205
 Partitioning and Secondary Indexes 206
 Partitioning Secondary Indexes by Document 206
 Partitioning Secondary Indexes by Term 208
 Rebalancing Partitions 209
 Strategies for Rebalancing 210
 Operations: Automatic or Manual Rebalancing 213
 Request Routing 214
 Parallel Query Execution 216
 Summary 216

7. Transactions .. 221
 The Slippery Concept of a Transaction 222
8. The Trouble with Distributed Systems .. 273
 Faults and Partial Failures 274
 Cloud Computing and Supercomputing 275
 Unreliable Networks 277
 Network Faults in Practice 279
 Detecting Faults 280
 Timeouts and Unbounded Delays 281
 Synchronous Versus Asynchronous Networks 284
 Unreliable Clocks 287
 Monotonic Versus Time-of-Day Clocks 288
 Clock Synchronization and Accuracy 289
 Relying on Synchronized Clocks 291
 Process Pauses 295
 Knowledge, Truth, and Lies 300
 The Truth Is Defined by the Majority 300
 Byzantine Faults 304
 System Model and Reality 306
 Summary 310

9. Consistency and Consensus ... 321
 Consistency Guarantees 322
 Linearizability 324
 What Makes a System Linearizable? 325
 Relying on Linearizability 330
 Implementing Linearizable Systems 332
 The Cost of Linearizability 335
 Ordering Guarantees 339
 Ordering and Causality 339
 Sequence Number Ordering 343
Total Order Broadcast 348
Distributed Transactions and Consensus 352
Atomic Commit and Two-Phase Commit (2PC) 354
Distributed Transactions in Practice 360
Fault-Tolerant Consensus 364
Membership and Coordination Services 370
Summary 373

Part III. Derived Data

10. Batch Processing .. 389
 Batch Processing with Unix Tools 391
 Simple Log Analysis 391
 The Unix Philosophy 394
 MapReduce and Distributed Filesystems 397
 MapReduce Job Execution 399
 Reduce-Side Joins and Grouping 403
 Map-Side Joins 408
 The Output of Batch Workflows 411
 Comparing Hadoop to Distributed Databases 414
 Beyond MapReduce 419
 Materialization of Intermediate State 419
 Graphs and Iterative Processing 424
 High-Level APIs and Languages 426
 Summary 429

11. Stream Processing .. 439
 Transmitting Event Streams 440
 Messaging Systems 441
 Partitioned Logs 446
 Databases and Streams 451
 Keeping Systems in Sync 452
 Change Data Capture 454
 Event Sourcing 457
 State, Streams, and Immutability 459
 Processing Streams 464
 Uses of Stream Processing 465
 Reasoning About Time 468
 Stream Joins 472
 Fault Tolerance 476
 Summary 479
12. The Future of Data Systems ... 489
 Data Integration 490
 - Combining Specialized Tools by Deriving Data 490
 - Batch and Stream Processing 494
 Unbundling Databases 499
 - Composing Data Storage Technologies 499
 - Designing Applications Around Dataflow 504
 - Observing Derived State 509
 Aiming for Correctness 515
 - The End-to-End Argument for Databases 516
 - Enforcing Constraints 521
 - Timeliness and Integrity 524
 - Trust, but Verify 528
 Doing the Right Thing 533
 - Predictive Analytics 533
 - Privacy and Tracking 536
 Summary 543

Glossary .. 553

Index .. 559