Preface. .. xiii

1. Exploratory Data Analysis. ... 1
 Elements of Structured Data 2
 Further Reading 4
 Rectangular Data 5
 Data Frames and Indexes 6
 Nonrectangular Data Structures 7
 Further Reading 8
 Estimates of Location 8
 Mean 9
 Median and Robust Estimates 10
 Example: Location Estimates of Population and Murder Rates 12
 Further Reading 13
 Estimates of Variability 13
 Standard Deviation and Related Estimates 14
 Estimates Based on Percentiles 17
 Example: Variability Estimates of State Population 18
 Further Reading 19
 Exploring the Data Distribution 19
 Percentiles and Boxplots 20
 Frequency Table and Histograms 21
 Density Estimates 24
 Further Reading 26
 Exploring Binary and Categorical Data 26
 Mode 28
 Expected Value 28
 Further Reading 29
2. Data and Sampling Distributions .. 43
 Random Sampling and Sample Bias
 Bias
 Random Selection
 Size versus Quality: When Does Size Matter?
 Sample Mean versus Population Mean
 Further Reading
 Selection Bias
 Regression to the Mean
 Further Reading
 Sampling Distribution of a Statistic
 Central Limit Theorem
 Standard Error
 Further Reading
 The Bootstrap
 Resampling versus Bootstrapping
 Further Reading
 Confidence Intervals
 Further Reading
 Normal Distribution
 Standard Normal and QQ-Plots
 Long-Tailed Distributions
 Further Reading
 Student's t-Distribution
 Further Reading
 Binomial Distribution
 Further Reading
 Poisson and Related Distributions
 Poisson Distributions
 Exponential Distribution
 Estimating the Failure Rate
3. Statistical Experiments and Significance Testing. .. 79

- **A/B Testing**
 - Why Have a Control Group?
 - Why Just A/B? Why Not C, D…?
 - For Further Reading 84

- **Hypothesis Tests**
 - The Null Hypothesis 86
 - Alternative Hypothesis 86
 - One-Way, Two-Way Hypothesis Test 87
 - Further Reading 88

- **Resampling**
 - Permutation Test 88
 - Example: Web Stickiness 89
 - Exhaustive and Bootstrap Permutation Test 92
 - Permutation Tests: The Bottom Line for Data Science 93
 - For Further Reading 93

- **Statistical Significance and P-Values**
 - P-Value 96
 - Alpha 96
 - Type 1 and Type 2 Errors 98
 - Data Science and P-Values 98
 - Further Reading 99

- **t-Tests**
 - Further Reading 101

- **Multiple Testing**
 - Further Reading 104

- **Degrees of Freedom**
 - Further Reading 106

- **ANOVA**
 - F-Statistic 109
 - Two-Way ANOVA 110
 - Further Reading 111

- **Chi-Square Test**
 - Chi-Square Test: A Resampling Approach 112
 - Chi-Squared Test: Statistical Theory 114
 - Fisher’s Exact Test 115
 - Relevance for Data Science 117
 - Further Reading 118
4. **Regression and Prediction** ... 127
 Simple Linear Regression 127
 The Regression Equation 129
 Fitted Values and Residuals 131
 Least Squares 132
 Prediction versus Explanation (Profiling) 133
 Further Reading 134
 Multiple Linear Regression 134
 Example: King County Housing Data 135
 Assessing the Model 136
 Cross-Validation 138
 Model Selection and Stepwise Regression 139
 Weighted Regression 141
 Prediction Using Regression 142
 The Dangers of Extrapolation 143
 Confidence and Prediction Intervals 143
 Factor Variables in Regression 145
 Dummy Variables Representation 145
 Factor Variables with Many Levels 147
 Ordered Factor Variables 149
 Interpreting the Regression Equation 150
 Correlated Predictors 150
 Multicollinearity 151
 Confounding Variables 152
 Interactions and Main Effects 153
 Testing the Assumptions: Regression Diagnostics 155
 Outliers 156
 Influential Values 158
 Heteroskedasticity, Non-Normality and Correlated Errors 161
 Partial Residual Plots and Nonlinearity 164
 Polynomial and Spline Regression 166
 Polynomial 167
 Splines 168
 Generalized Additive Models 170
 Further Reading 172
5. Classification ... 173
 Naive Bayes 174
 Why Exact Bayesian Classification Is Impractical 175
 The Naive Solution 176
 Numeric Predictor Variables 178
 Further Reading 178
 Discriminant Analysis 179
 Covariance Matrix 180
 Fisher's Linear Discriminant 180
 A Simple Example 181
 Further Reading 183
 Logistic Regression 184
 Logistic Response Function and Logit 184
 Logistic Regression and the GLM 186
 Generalized Linear Models 187
 Predicted Values from Logistic Regression 188
 Interpreting the Coefficients and Odds Ratios 188
 Linear and Logistic Regression: Similarities and Differences 190
 Assessing the Model 191
 Further Reading 194
 Evaluating Classification Models 194
 Confusion Matrix 195
 The Rare Class Problem 196
 Precision, Recall, and Specificity 197
 ROC Curve 198
 AUC 200
 Lift 201
 Further Reading 202
 Strategies for Imbalanced Data 203
 Undersampling 204
 Oversampling and Up/Down Weighting 204
 Data Generation 205
 Cost-Based Classification 206
 Exploring the Predictions 206
 Further Reading 208
 Summary 208

 K-Nearest Neighbors 210
 A Small Example: Predicting Loan Default 211
7. Unsupervised Learning

Principal Components Analysis
- A Simple Example
- Computing the Principal Components
- Interpreting Principal Components

Further Reading

K-Means Clustering
- A Simple Example
- K-Means Algorithm
- Interpreting the Clusters
- Selecting the Number of Clusters

Hierarchical Clustering
- A Simple Example
- The Dendrogram
- The Agglomerative Algorithm
- Measures of Dissimilarity
- Model-Based Clustering

Further Reading